Diagram Groups, Braid Groups, and Orderability

نویسندگان

  • BERT WIEST
  • Mark Sapir
چکیده

We prove that all diagram groups (in the sense of Guba and Sapir) are left-orderable. The proof is in two steps: firstly, it is proved that all diagram groups inject in a certain braid group on infinitely many strings, and secondly, this group is then shown to be left-orderable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local indicability and commutator subgroups of Artin groups

Artin groups (also known as Artin-Tits groups) are generalizations of Artin’s braid groups. This paper concerns Artin groups of spherical type, that is, those whose corresponding Coxeter group is finite, as is the case for the braid groups. We compute presentations for the commutator subgroups of the irreducible spherical-type Artin groups, generalizing the work of Gorin and Lin [GL69] on the b...

متن کامل

A New Garside Structure for Braid Groups of Type

We describe a new presentation for the complex reflection groups of type (e, e, r) and their braid groups. A diagram for this presentation is proposed. The presentation is a monoid presentation which is shown to give rise to a Garside structure. A detailed study of the combinatorics of this structure leads us to describe it as post-classical.

متن کامل

A New Garside Structure for Braid Groups

We describe a new presentation for the complex reflection groups of type (e, e, r) and their braid groups. A diagram for this presentation is proposed. The presentation is a monoid presentation which is shown to give rise to a Garside structure. A detailed study of the combinatorics of this structure leads us to describe it as post-classical.

متن کامل

Braid Pictures for Artin Groups

We define the braid groups of a two-dimensional orbifold and introduce conventions for drawing braid pictures. We use these to realize the Artin groups associated to the spherical Coxeter diagrams An, Bn = Cn and Dn and the affine diagrams Ãn, B̃n, C̃n and D̃n as subgroups of the braid groups of various simple orbifolds. The cases Dn, B̃n, C̃n and D̃n are new. In each case the Artin group is a normal...

متن کامل

F eb 2 00 9 A NEW GARSIDE STRUCTURE FOR BRAID GROUPS OF TYPE ( e , e , r )

We describe a new presentation for the complex reflection groups of type (e, e, r) and their braid groups. A diagram for this presentation is proposed. The presentation is a monoid presentation which is shown to give rise to a Garside structure. A detailed study of the combinatorics of this structure leads us to describe it as post-classical.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005